· 62

Exam. Code : 211003 Subject Code : 4865

M.Sc. (Mathematics) 3rd Semester OPERATIONS RESEARCH—I Paper : Math-578

Time Allowed—Three Hours] [Maximum Marks—100

Note :—Candidates are to attempt FIVE questions, ONE from each Section. Fifth question may be attempted from any Section. All questions carry equal marks. Non-programmable scientific calculator is allowed.

2=20

SECTION-A

I. (a) Use Big-M method to solve the following linear programming problem :

Maximize $Z = X_1 + 2X_2 + 3X_3 - X_4$

subject to the constraints

 $X_{1} + 2X_{2} + 3X_{3} = 15$ $2X_{1} + X_{2} + 5X_{3} = 20$ $X_{1} + 2X_{2} + X_{3} + X_{4} = 10$ and $X_{1}, X_{2}, X_{2}, X_{4} \ge 0$.

4481(2119)/HH-13046

(Contd.)

www.a2zpapers.com www.a2zpapers.com bad free old Question papers gndu, ptu hp board, punjab

(b) Use the graphical method to solve the following linear programming problem : Maximize Z = 300X₁ + 400X₂ subject to the constraints 5X₁ + 4X₂ ≤ 200 3X₁ + 5X₂ ≤ 150 5X₁ + 4X₂ ≥ 100 8X₁ + 4X₂ ≥ 80 and X₁, X₂ ≥ 0.
(c) What is an unbounded solution, and how is this

condition recognised in the graphical method ?

12+6+2=20

II. (a) Use two-phase simplex method to solve the following linear programming problem :

Maximize $Z = 3X_1 + 2X_2 + 2X_3$ subject to the constraints

$$\begin{split} 5X_1 + 7X_2 + 4X_3 &\leq 7\\ -4X_1 + 7X_2 + 5X_3 &\geq -2\\ 3X_1 + 4X_2 - 6X_3 &\geq 29/7\\ \text{and } X_1, X_2, X_3 &\geq 0. \end{split}$$

4481(2119)/HH-13046

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

2

-101

- (b) Find all the basic solutions of the following system,
 X₁ + 2X₂ + X₃ = 4, 2X₁ + X₂ + 5X₃ = 5 and prove that they are non-degenerate.
- (c) What is an infeasible solution, and how does it occur ? How is this condition recognised in the graphical method ?
 12+6+2=20

SECTION-B

- III. (a) If \mathbf{x}^* and \mathbf{y}^* be feasible solutions to the primal and dual linear programming (LP) problems, respectively, then show that a necessary and sufficient condition for \mathbf{x}^* and \mathbf{y}^* to be optimal solutions to their respective problem is, $y_i \cdot x_{n + i} = 0$, i = 1, 2, 3, ..., m and $x_j \cdot y_{m+j} = 0$, j = 1, 2, ..., n where x_{n+1} is the i-th slack variable in the primal LP problem and y_{m+j} is the j-th surplus variable for the dual LP problem.
 - (b) Consider the following transport problem. Suppose there are penalty costs for every unsatisfied demand

4481(2119)/HH-13046

3

(Contd.)

www.a2zpapers.com www.a2zpapers.com

oad free old Question papers gndu, ptu hp board, punjab

unit which are given by 5, 3 and 2 for destination I, II and II, respectively. Find the optimal solution.

			То		
		osI o	in infrasi	III	Supply
	A	5	in q wol	7	10
From	В	6	4 terri	6	80
	С	30	2	5	15
Demand		75	20	50	

20=8+21 add. dual linear programming (LP), problems

IV. (a) Find the solution of primary by solving the dual of the following linear programming problem :

Minimize $Z = 3X_1 - 2X_2 + 4X_3$

subject to the constraints

 $3X_{1} + 5X_{2} + 4X_{3} \ge 7$ $6X_{1} + X_{2} + 3X_{3} \ge 4$ $7X_{1} - 2X_{2} - X_{3} \le 10$ $X_{1} - 2X_{2} + 5X_{3} \ge 3$ $4X_{1} + 7X_{2} - 2X_{3} \ge 2$ and $X_{1}, X_{2}, X_{3} \ge 0$.

4481(2119)/HH-13046

4

(Contd.)

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

(b) Consider a firm having two factories. The firm is to ship its products from the factories to three retail stores. The number of units available at factories X and Y are 200 and 300, respectively, while those demanded at retail stores A, B and C are 100, 150 and 250 respectively. Rather than shipping the products directly from factories to retail stores, it is asked to investigate the possibility of trans-shipment. The transportation cost (in rupees) per unit is given in the table below. Find the optimal shipping schedule :

N	-8 Io 16	Factory		Retail Store			
		X	Y		A	B	С
Factory	∫ X	0	8		7	8	9
	Y	6	0		5	4	3
	FA	7	2		0	5	1
Retail Store	- B	1	5		1	0	4
	LC	8	9		7	8	0
						12	+8=2

SECTION—C

V. (a) The airline company has drawn up a new flight schedule that involves five flights. To assist in allocating five pilots to the flight, it has asked them to state their preference scores by giving each flight a number out of 10. The highest the number, the greater the preference. A few of these

5

4481(2119)/HH-13046

(Contd.)

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

flights are unsuitable to some pilots, owing to domestic reasons. These have been marked with '×'. What should be the allocation of the pilots to flights in order to meet as many preferences as possible ?

		Transpo	п	ш	IV	V
	A	8000	2	nice× de	5	igo 4 rb
	B	10	9	2	8	4
Pilot	С	5	4	9	6	×
	D	3	6	2	8	7
	E	5	6	10	4	3

vnlidizion ant stagitzev i oFlight Number in balet

- (b) In a game of matching coins with two players, suppose A wins one unit of value when there are two heads, wins nothing when there are two tails and losses ½ unit of value when there is one head and one tail. Determine the payoff matrix, the best strategies for each player and the value of the game to A. 10+10=20
- VI. (a) A salesman has to visit five cities A, B, C, D and E. The distances (in hundred kilometres) between the five cities are given below. If the salesman starts from city A and has to come back to city

4481(2119)/HH-13046

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

6

(Contd.)

A, which route should he select so that the total distance travelled is minimum ?

(b) Solve the following game after reducing it to a 2 × 2 game : interference off of portfolie

	Player	B-1	Player	B-2	Player	B-3
1	1		7	100 C	2	

Player A-1	1	$8 \geq \chi$	2
Player A-2	6	2	7
Player A-3	5	1	6
	are integras.	N A N A D	10+10=20

SECTION-D

VII. (a) Solve the integer linear programming problem (ILPP) using the cutting plane algorithm :

Maximize $Z = 2X_1 + 20X_2 - 10X_3$

subject to the constraints /

 $20X_{1} + 20X_{2} + 4X_{3} \le 15$ $6X_{1} + 20X_{2} + 4X_{3} = 20$

and $X_1, X_2, X_3 \ge 0$ and are integers.

4481(2119)/HH-13046 7 (Contd.)

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

(b) Determine the value of u_1 , u_2 and u_3 , so as to : Maximize $Z = u_1 \cdot u_2 \cdot u_3$ subject to the constraints $u_1 + u_2 + u_3 = 10$ 10+10=20 and $u_1, u_2, u_3 \ge 0$. VIII. (a) Solve the following (ILPP) using the branch and bound method : Maximize $Z = 3X_1 + 5X_2$ subject to the constraints and S & S $2X_1 + 4X_2 \le 25$ $X_1 \leq 8$ $2X_2 \le 10$ and $X_1, X_2 \ge 0$ are integers. Solve the following LPP by dynamic programming (b) approach :

Maximize $Z = 8X_1 + 7X_2$

subject to the constraints

 $2X_1 + X_2 \leq 8^{1/2000} \text{ and } 1000 \text{ duration}$ $5X_1 + 2X_2 \le 15$ and $X_1, X_2 \ge 0.$ 10+10=20 76 0 C . Y . X ... 7 6m

1000

4481(2119)/HH-13046

www.a2zpapers.com www.a2zpapers.com bad free old Question papers gndu, ptu hp board, punjab

8