Exam. Code : 211003
 Subject Code : 4865

M.Sc. (Mathematics) $3^{\text {rd }}$ Semester OPERATIONS RESEARCH-I

Paper : Math-578
Time Allowed-Three Hours] [Maximum Marks-100
Note :-Candidates are to attempt FIVE questions, ONE from each Section. Fifth question may be attempted from any Section. All questions carry equal marks. Non-programmable scientific calculator is allowed.

SECTION-A

I. (a) Use Big-M method to solve the following linear programming problem :

Maximize $\mathrm{Z}=\mathrm{X}_{1}+2 \mathrm{X}_{2}+3 \mathrm{X}_{3}-\mathrm{X}_{4}$
subject to the constraints

$$
\begin{aligned}
& X_{1}+2 X_{2}+3 X_{3}=15 \\
& 2 X_{1}+X_{2}+5 X_{3}=20 \\
& X_{1}+2 X_{2}+X_{3}+X_{4}=10
\end{aligned}
$$

and $X_{1}, X_{2}, X_{3}, X_{4} \geq 0$.

a2zpapers.com

(b) Use the graphical method to solve the following linear programming problem :

Maximize $Z=300 X_{1}+400 X_{2}$
subject to the constraints

$$
\begin{aligned}
& 5 X_{1}+4 X_{2} \leq 200 \\
& 3 X_{1}+5 X_{2} \leq 150 \\
& 5 X_{1}+4 X_{2} \geq 100 \\
& 8 X_{1}+4 X_{2} \geq 80
\end{aligned}
$$

and $X_{1}, X_{2} \geq 0$.
(c) What is an unbounded solution, and how is this condition recognised in the graphical method?

$$
12+6+2=20
$$

II. (a) Use two-phase simplex method to solve the following linear programming problem :

Maximize $\mathrm{Z}=3 \mathrm{X}_{1}+2 \mathrm{X}_{2}+2 \mathrm{X}_{3}$
subject to the constraints

$$
\begin{aligned}
& 5 \mathrm{X}_{1}+7 \mathrm{X}_{2}+4 \mathrm{X}_{3} \leq 7 \\
& -4 \mathrm{X}_{1}+7 \mathrm{X}_{2}+5 \mathrm{X}_{3} \geq-2 \\
& 3 \mathrm{X}_{1}+4 \mathrm{X}_{2}-6 \mathrm{X}_{3} \geq 29 / 7
\end{aligned}
$$

and $X_{1}, X_{2}, X_{3} \geq 0$.

a2zpapers.com

(b) Find all the basic solutions of the following system, $\mathrm{X}_{1}+2 \mathrm{X}_{2}+\mathrm{X}_{3}=4,2 \mathrm{X}_{1}+\mathrm{X}_{2}+5 \mathrm{X}_{3}=5$ and prove that they are non-degenerate.
(c) What is an infeasible solution, and how does it occur? How is this condition recognised in the graphical method ?
$12+6+2=20$

SECTION-B

III. (a) If \mathbf{x}^{*} and \mathbf{y}^{*} be feasible solutions to the primal and dual linear programming (LP) problems, respectively, then show that a necessary and sufficient condition for \mathbf{x}^{*} and \mathbf{y}^{*} to be optimal solutions to their respective problem is, $\mathrm{y}_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{n}+\mathrm{i}}=0, \mathrm{i}=1,2,3, \ldots ., \mathrm{m}$ and $x_{j} \cdot y_{m+j}=0, j=1,2, \ldots, n$ where x_{n+1} is the i-th slack variable in the primal LP problem and y_{m+j} is the j-th surplus variable for the dual $L P$ problem.
(b) Consider the following transport problem. Suppose there are penalty costs for every unsatisfied demand

a2zpapers.com

unit which are given by 5,3 and 2 for destination I, II and II, respectively. Find the optimal solution.

		I	II	III	Supply
	A	5	1	7	10
From	B	6	4	6	80
	C	3	2	5	15
Demand		75	20	50	

$$
12+8=20
$$

IV. (a) Find the solution of primary by solving the dual of the following linear programming problem :

Minimize $\mathrm{Z}=3 \mathrm{X}_{1}-2 \mathrm{X}_{2}+4 \mathrm{X}_{3}$
subject to the constraints

$$
\begin{aligned}
& 3 X_{1}+5 X_{2}+4 X_{3} \geq 7 \\
& 6 X_{1}+X_{2}+3 X_{3} \geq 4 \\
& 7 X_{1}-2 X_{2}-X_{3} \leq 10 \\
& X_{1}-2 X_{2}+5 X_{3} \geq 3 \\
& 4 X_{1}+7 X_{2}-2 X_{3} \geq 2
\end{aligned}
$$

and $X_{1}, X_{2}, X_{3} \geq 0$.

a2zpapers.com

(b) Consider a firm having two factories. The firm is to ship its products from the factories to three retail stores. The number of units available at factories X and Y are 200 and 300 , respectively, while those demanded at retail stores A, B and C are 100,150 and 250 respectively. Rather than shipping the products directly from factories to retail stores, it is asked to investigate the possibility of trans-shipment. The transportation cost (in rupees) per unit is given in the table below. Find the optimal shipping schedule :

	Factory		Retail Store		
	X	Y	A	B	C
Factory $\{\mathbf{X}$	0	8	7	8	9
U Y	6	0	5	4	3
${ }^{\text {A }}$	7	2	0	5	1
Retail Store $\{\mathbf{B}$	1	5	1	0	4
C	8	9	7	8	0

SECTION-C

V. (a) The airline company has drawn up a new flight schedule that involves five flights. To assist in allocating five pilots to the flight, it has asked them to state their preference scores by giving each flight a number out of 10 . The highest the number, the greater the preference. A few of these

a2zpapers.com

flights are unsuitable to some pilots, owing to domestic reasons. These have been marked with ' x '. What should be the allocation of the pilots to flights in order to meet as many preferences as possible ?

Flight Number

(b) In a game of matching coins with two players, suppose A wins one unit of value when there are two heads, wins nothing when there are two tails and losses $1 / 2$ unit of value when there is one head and one tail. Determine the payoff matrix, the best strategies for each player and the value of the game to A .

$$
10+10=20
$$

VI. (a) A salesman has to visit five cities A, B, C, D and E. The distances (in hundred kilometres) between the five cities are given below. If the salesman starts from city A and has to come back to city

a2zpapers.com

A, which route should he select so that the total distance travelled is minimum ?

To City

-		A	B	C	D	E
	A	-	1	6	8	4
From City	B	7	-	8	5	6
	C	6	8	-	9	7
	D	8	5	9	-	8
	E	4	6	7	8	-

(b) Solve the following game after reducing it to a 2×2 game :

Player B-1 Player B-2 Player B-3

	Player A-1	1	7
	2	2	
Player A-2	6	7	
Player A-3	5	1	6
			$10+10=20$

SECTION-D

VII. (a) Solve the integer linear programming problem (ILPP) using the cutting plane algorithm :

Maximize $\mathrm{Z}=2 \mathrm{X}_{1}+20 \mathrm{X}_{2}-10 \mathrm{X}_{3}$
subject to the constraints

$$
\begin{aligned}
& 20 X_{1}+20 X_{2}+4 X_{3} \leq 15 \\
& 6 X_{1}+20 X_{2}+4 X_{3}=20
\end{aligned}
$$

and $X_{1}, X_{2}, X_{3} \geq 0$ and are integers.
(b) Determine the value of u_{1}, u_{2} and u_{3}, so as to: Maximize $Z=u_{1} \cdot u_{2} \cdot u_{3}$ subject to the constraints

$$
u_{1}+u_{2}+u_{3}=10
$$

and $u_{1}, u_{2}, u_{3} \geq 0$.

$$
10+10=20
$$

VIII. (a) Solve the following (ILPP) using the branch and bound method:

Maximize $Z=3 X_{1}+5 X_{2}$
subject to the constraints

$$
\begin{aligned}
& 2 X_{1}+4 X_{2} \leq 25 \\
& X_{1} \leq 8 \\
& 2 X_{2} \leq 10
\end{aligned}
$$

and $X_{1}, X_{2} \geq 0$ are integers.
(b) Solve the following LPP by dynamic programming approach :

Maximize $Z=8 \mathrm{X}_{1}+7 \mathrm{X}_{2}$
subject to the constraints

$$
\begin{align*}
& \quad 2 \mathrm{X}_{1}+\mathrm{X}_{2} \leq 8 \\
& 5 \mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 15 \\
& \text { and } \mathrm{X}_{1}, \mathrm{X}_{2} \geq 0
\end{align*}
$$

